Week 2: Sequences and Series

1. Multi Single

Let $a_n = \sqrt{n+1} - \sqrt{n}$. Which of the following is true?

- (a) $\lim_{n \to \infty} a_n = -1$
- (b) $\lim_{n \to \infty} a_n = 1$
- (c) The sequence a_n diverges.
- (d) $\lim_{n\to\infty} a_n = 0$

MULTI Single

Let $a_n = \frac{n^2}{n+1}$. Which of the following is true?

- (a) $\lim_{n\to\infty} a_n = 1$
- (b) The sequence a_n diverges.
- (c) $\lim_{n \to \infty} a_n = -1$
- (d) $\lim a_n = 0$

MULTI Single

Consider the sequence $a_n = \sqrt{n}$. Which of the following is true?

- (a) $\lim_{n\to\infty} a_n = 1$ (b) The sequence a_n diverges.
- (c) $\lim_{n\to\infty} a_n = 0$ (d) a_n is a Cauchy sequence.

MULTI Single

Consider the sequence $a_n = (-1)^n - \frac{1}{n}$. Which of the following is true?

- (a) $\sup\{a_n : n \in \mathbb{N}\} = -1$
- (b) $\sup\{a_n : n \in \mathbb{N}\} = \frac{3}{2}$
- (c) $\sup\{a_n : n \in \mathbb{N}\} = 1$
- (d) $\sup\{a_n : n \in \mathbb{N}\} = 0$

MULTI Single

Determine whether the series $1 + 0.4 + 0.16 + 0.064 + \dots$ converges or diverges. If it is convergent, what is the sum?

- (a) The series converges to 1.63.
- (b) The series converges to $\frac{5}{3}$. (c) The series converges to $\frac{5}{2}$.
- (d) The series diverges.

6. MULTI Single

Determine whether the series $3+2+\frac{4}{3}+\frac{8}{9}+\dots$ converges or diverges. If it is convergent, what is the sum?

- (a) The series diverges.
- (b) The series converges to 7.22.
- (c) The series converges to 9.
- (d) The series converges to $\frac{15}{2}$.

MULTI Single

Determine whether the series $\sum_{k=1}^{\infty} \frac{10^k}{(-9)^{k-1}}$ converges or diverges. If it is convergent, what is the sum?

- (a) The series converges to $-\frac{100}{9}$.
- (b) The series converges to 11.23.
- (c) The series converges to -90.
- (d) The series diverges.

What is the radius of convergence ρ for the power series $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}x^k}{k^3}$?

- (a) $\rho = 0$ (b) $\rho = \frac{1}{2}$ (c) $\rho = 1$
- (d) $\rho = \infty$

MULTI Single

Let $x \in \mathbb{R}$ and consider the series $\sum_{k=1}^{\infty} k!(2x-1)^k$. For what value of x does the series converge?

- (a) The series converges for x = 0.
- (b) The series converges for all $x \in \mathbb{R}$.
- (c) The series converges for $x = \frac{1}{2}$.
- (d) The series does not converges for any $x \in \mathbb{R}$.

10. MULTI Single

What is the radius of convergence ρ for the power series $\sum_{k=1}^{15} \frac{2^k x^k}{k+1}$?

- (a) $\rho = \frac{1}{2}$
- (b) $\rho = \infty$

- (c) $\rho = 0$ (d) $\rho = 1$

 $Total\ of\ marks:\ 10$