Week 4: Derivatives

1. MULTI Single

Let f(x) be a differentiable function. Now consider

$$f_1(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}, \qquad f_2(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

- (a) f_1 defines a derivative while f_2 does not
- (b) f_2 defines a derivative while f_1 does not
- (c) Neither f_1 or f_2 define the derivative of f
- (d) Both f_1 and f_2 define the derivative of f

MULTI Single

Calculate $\frac{d}{dt} [a^t]$ where a > 0 is a constant.

- (a) ta^{t-1}
- (b) $a^t \ln(a)$
- (c) $a^t + a$
- (d) a^t

Calculate $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{e^x}{x^2} \right)$.

(a)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{e^x}{x^2} \right) = \frac{e^x}{x^4}$$

(b)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{e^x}{x^2} \right) = \frac{e^x(x-2)}{x^3}$$

(c)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{e^x}{x^2} \right) = \frac{e^x}{x^2}$$

(a)
$$\frac{d}{dx} \left(\frac{e^x}{x^2} \right) = \frac{e^x}{x^4}$$
(b)
$$\frac{d}{dx} \left(\frac{e^x}{x^2} \right) = \frac{e^x(x-2)}{x^3}$$
(c)
$$\frac{d}{dx} \left(\frac{e^x}{x^2} \right) = \frac{e^x}{x^2}$$
(d)
$$\frac{d}{dx} \left(\frac{e^x}{x^2} \right) = \frac{e^x(x^2+1)}{x^3}$$

MULTI Single

Given that $\cosh(x) = \frac{e^x + e^{-x}}{2}$ and $\sinh(x) = \frac{e^x - e^{-x}}{2}$, which of the following is true?

(a)
$$\frac{d}{dx} \cosh(x) = \sinh(x)$$
 and $\frac{d}{dx} \sinh(x) = -\cosh(x)$

(b)
$$\frac{dx}{dx} \cosh(x) = -\sinh(x)$$
 and $\frac{d}{dx} \sinh(x) = \cosh(x)$
(c) $\frac{d}{dx} \cosh(x) = \sinh(x)$ and $\frac{d}{dx} \sinh(x) = \cosh(x)$

(c)
$$\frac{\mathrm{d}}{\mathrm{d}x}\cosh(x) = \sinh(x)$$
 and $\frac{\mathrm{d}}{\mathrm{d}x}\sinh(x) = \cosh(x)$

(d)
$$\frac{d}{dx} \cosh(x) = -\sinh(x)$$
 and $\frac{d}{dx} \sinh(x) = -\cosh(x)$

Calculate $\frac{d}{dx} \left[\ln \left(a^x + a^{-x} \right) \right]$ where a > 0 is a constant.

(a)
$$\frac{a^x - a^{-x}}{a^x + a^{-x}}$$

(b)
$$\frac{a^x - a^{-x}}{a^x + a^{-x}} \ln a$$

(a)
$$\frac{a^{x} - a^{-x}}{a^{x} + a^{-x}}$$
(b)
$$\frac{a^{x} - a^{-x}}{a^{x} + a^{-x}} \ln a$$
(c)
$$\frac{a^{x} + a^{-x}}{a^{x} - a^{-x}} \ln a$$

(d)
$$\frac{a^x + a^{-x}}{a^x - a^{-x}}$$

6. Multi Single

Calculate $\frac{d^3}{dx^3} [x^4 e^x]$, i.e., the third derivative of the function.

(a)
$$e^x(x^4 + 12x^3 + 36x^2 + 40x)$$

(a)
$$e^x(x^4 + 12x^3 + 36x^2 + 40x)$$

(b) $e^x(x^4 + 12x^3 + 24x^2 + 40x)$
(c) $e^x(x^4 + 12x^3 + 36x^2 + 24x)$
(d) $e^x(x^4 + 12x^3 + 24x^2 + 24x)$

(c)
$$e^x(x^4 + 12x^3 + 36x^2 + 24x)$$

(d)
$$e^x(x^4 + 12x^3 + 24x^2 + 24x)$$

The Softplus function is defined as

Softplus
$$(x) = \ln(1 + e^x)$$
.

What is the derivative of Softplus and where is it defined?

(a) Softplus is not differentiable

(b)
$$\frac{\mathrm{d}}{\mathrm{d}x} \mathrm{Softplus}(x) = \left\{ \begin{array}{l} 0, & \text{if } x \leq 0 \\ 1, & \text{else} \end{array} \right\}$$
 and it is defined on $\mathbb{R} \setminus \{0\}$

(c)
$$\frac{\mathrm{d}}{\mathrm{d}x} \mathrm{Softplus}(x) = \frac{e^x}{x}$$
 and is defined on $\mathbb{R} \setminus \{0\}$

(d)
$$\frac{d}{dx}$$
Softplus $(x) = \frac{e^x}{1 + e^x}$ and is defined on \mathbb{R}

Choose the expression equivalent to $\sum_{n=1}^{\infty} n \cdot x^n$.

Hint: Recall that $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ and use differentiation.

(a)
$$\left(\frac{1}{1-x}\right)^2$$

(b)
$$-\frac{x}{1-x^2}$$

(b)
$$-\frac{x}{1-x^2}$$

(c) $\frac{1-x^2}{(1-x)^2}$
(d) $\frac{x}{1-x}$

(d)
$$\frac{x}{1-x}$$

Find the derivative of $e^{3x} \cos 4x$.

Elements of Calculus Week 4 Exercises

(a)
$$\frac{d}{dx} \left(e^{3x} \cos 4x \right) = e^{3x} (4 \cos 4x - 3 \sin 4x).$$

(b) $\frac{d}{dx} \left(e^{3x} \cos 4x \right) = e^{3x} (3 \cos 4x + 4 \cos 3x).$
(c) $\frac{d}{dx} \left(e^{3x} \cos 4x \right) = e^{3x} (3 \cos 4x - 4 \sin 4x).$
(d) $\frac{d}{dx} \left(e^{3x} \cos 4x \right) = e^{3x} (3 \cos 4x + 4 \sin 4x).$

(b)
$$\frac{d}{dx} \left(e^{3x} \cos 4x \right) = e^{3x} (3\cos 4x + 4\cos 3x).$$

(c)
$$\frac{d}{dx} \left(e^{3x} \cos 4x \right) = e^{3x} (3\cos 4x - 4\sin 4x).$$

(d)
$$\frac{d}{dx} \left(e^{3x} \cos 4x \right) = e^{3x} (3\cos 4x + 4\sin 4x).$$

Consider the equation $\sin(y) + y^3 = 6 - x^3$. Find $\frac{dy}{dx}$ by implicit differentiation.

(a)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3x^2}{\cos(y) + 3y^2}$$

(c)
$$\frac{dy}{dx} = \frac{-3x^2}{\cos(y) + y}$$

(d)
$$\frac{dy}{dx} = \frac{-3x^2}{\sin(y) + 3y^2}$$

Total of marks: 10