Week 9: Finite Difference Schemes and Total/Directional/Partial **Derivatives**

1. Multi Single

Which of the following statements about explicit and implicit finite difference schemes is false?

- (a) Implicit scheme are usually unconditionally stable.
- (b) Implicit schemes are more computationally expensive.
- (c) Explicit scheme usually have stability conditions.
- (d) Explicit schemes are more computationally expensive.

MULTI Single

Discretize the ODE

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -y + t$$

using the Backward Euler method and write out the iteration scheme.

(a)
$$y_{n+1} = \frac{y_n + (\Delta t)t_{n+1}}{\Delta t}$$

(b) $y_{n+1} = \frac{y_n + (\Delta t)t_{n+1}}{1 + \Delta t}$

(b)
$$y_{n+1} = \frac{y_n + (\Delta t)t_{n+1}}{1 + \Delta t}$$

(c)
$$y_{n+1} = y_n - (\Delta t)(-y_n - t_n)$$

(d) $y_{n+1} = y_n + (\Delta t)(-y_n + t_n)$

(d)
$$y_{n+1} = y_n + (\Delta t)(-y_n + t_n)$$

Discretize the ODE

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -y + t$$

using the Forward Euler method and write out the iteration scheme.

(a)
$$y_{n+1} = \frac{y_n + (\Delta t)t_{n+1}}{\Delta t}$$

(a)
$$y_{n+1} = \frac{y_n + (\Delta t)t_{n+1}}{\Delta t}$$

(b) $y_{n+1} = \frac{y_n + (\Delta t)t_{n+1}}{1 + \Delta t}$

(c)
$$y_{n+1} = y_n + (\Delta t)(-y_n + t_n)$$

(d)
$$y_{n+1} = y_n - (\Delta t)(-y_n - t_n)$$

4. Multi Single

The Crank-Nicolson method for discretizing first order ODEs

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y, t)$$

uses the forward difference quotient for the derivative and evaluates the right-hand side at the average of the current and the next time step, i.e., it discretizes the ODE as

$$\frac{y_{n+1} - y_n}{\Delta t} = \frac{1}{2} \Big(f(y_n, t_n) + f(y_{n+1}, t_{n+1}) \Big).$$

Use the Crank-Nicolson method to discretize the ODE

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -y + t$$

and write out the iteration scheme.

(a)
$$y_{n+1} = \frac{y_n - \frac{(\Delta t)}{2}(t_n + t_{n+1})}{1 + \frac{(\Delta t)}{2}}$$

(b)
$$y_{n+1} = \frac{y_n + \frac{(\Delta t)}{2}(t_n + t_{n+1})}{1 - \frac{(\Delta t)}{2}}$$

(c)
$$y_{n+1} = \frac{y_n + \frac{(\Delta t)}{2} (t_n + t_{n+1})}{1 + \frac{(\Delta t)}{2}}$$

(d)
$$y_{n+1} = \frac{y_n + (\Delta t)(t_n + t_{n+1})}{1 + \Delta t}$$

5.

Compute the total derivative of $f(x, y, z) = x^2 + xy + yz$.

(a) The total derivative is
$$\begin{pmatrix} 2x+y & x+z \\ y & 2x+y \end{pmatrix}$$
.

(b) The total derivative is
$$(2x + y, x + z, y)$$
.

(c) The total derivative is
$$(2x, x, y)$$
.

(d) The total derivative is
$$\begin{pmatrix} x & y \\ y & y+z \end{pmatrix}$$
.

Compute the total derivative of $f(x,y) = {x^2 + y \choose 2xy}$.

(a) The total derivative is
$$\begin{pmatrix} 1 & 2x \\ 2x & 2y \end{pmatrix}$$
.
(b) The total derivative is $\begin{pmatrix} 2x & 1 \\ 2y & 2x \end{pmatrix}$.

(b) The total derivative is
$$\begin{pmatrix} 2x & 1 \\ 2y & 2x \end{pmatrix}$$
.

(c) The total derivative is
$$(2x, 2y)$$
.

(d) The total derivative is
$$\begin{pmatrix} 2x \\ 2y \end{pmatrix}$$
.

Let
$$f(x,y) = \frac{x-y}{x+y}$$
. What is $\frac{\partial f}{\partial x}$?

(a)
$$\frac{2}{(x+y)^2}$$

(b)
$$\frac{2x}{(x+y)}$$
(c)
$$\frac{2y}{(x+y)}$$

(c)
$$\frac{2y}{(x+y)}$$

(d)
$$\frac{2y}{(x+y)^2}$$

Let
$$f(x, y, z) = \ln(x + 2y + 3z)$$
. What is $\frac{\partial f}{\partial z}$?

(b)
$$\frac{1}{x + 2y + 3z}$$

(c) $\frac{3}{x + 2y + 3z}$
(d) $3\ln(x + 2y + 3z)$

(c)
$$\frac{3}{x+2y+3z}$$

(d)
$$3\ln(x+2y+3z)$$

9. Single

The total resistance R produced by three conductors with resistances R_1 , R_2 , R_3 connected in a parallel circuit is given by the formula

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.$$

What is
$$\frac{\partial R}{\partial R_1}$$
?

(a)
$$-R_2^2$$

(a)
$$-R_2^2$$

(b) $-\frac{1}{R_2^2}$
(c) $\frac{R^2}{R_1^2}$

(c)
$$\frac{R^2}{R_1^2}$$

(d)
$$\frac{R}{R_1}$$

The gas law for a fixed mass m of an ideal gas at absolute temperate T, pressure P, and volume V is PV = mRT, where R is a constant. What is the value of $T \cdot \frac{\partial P}{\partial T} \cdot \frac{\partial V}{\partial T}$?

(a)
$$mR$$

(b)
$$(mR)^2$$

(b)
$$(mR)^2$$

(c) $\frac{PV}{(mR)^2}$

(d)
$$PV/T$$

Total of marks: 10