Constructor University Spring 2025 February 17, 2025

Elements of Calculus

Homework 2 (covering Weeks 3 and 4)

Due on March 4, 2025, before the tutorial! Please submit on moodle.

Problem 1 [2 points]

Prove that the function

$$f(x) = \begin{cases} 0 & \text{, for } x = 0\\ \sin\left(\frac{1}{x}\right) & \text{, for } x \neq 0 \end{cases}$$

is not continuous at x = 0 by constructing a sequence $(x_n)_{n\geq 0}$ that converges to 0, but for which $f(x_n)$ does not converge to f(0).

Problem 2 [2 points]

Suppose that for some $x_0 \in \mathbb{R}$ the sequence

$$x_n = x_0 - \frac{1}{n}$$

is given. Now consider two functions f(x) and g(x) (from \mathbb{R} to \mathbb{R}). Suppose that

$$\lim_{n \to \infty} f(x_n) = f(x_0),$$

but

 $\lim_{n \to \infty} g(x_n) \neq g(x_0).$

What can be deduced about the continuity of f and g at x_0 ?

Problem 3 [3 points]

Using the definition of limits of functions via converging sequences, prove that for

$$f(x) = \begin{cases} 0 & \text{, for } x = 0\\ \frac{x}{|x|} & \text{, for } x \neq 0 \end{cases}$$

we have $\lim_{x\to 0^+} f(x) = 1$, $\lim_{x\to 0^-} f(x) = -1$, and that $\lim_{x\to 0} f(x)$ does not exist.

Problem 4 [4 points]

Let

$$f(x) = \frac{x^2 + 3x - 10}{x - 2}.$$

What is the domain of f? What is $\lim_{x\to 2} f(x)$?

Problem 5 [3 points]

In class we discussed the product rule (fg)' = f'g + fg'. Generalize this rule for the *n*-th derivative $(fg)^{(n)}$.

Problem 6 [6 points]

Consider the curve parametrized by φ where $x = a \cos(3\varphi)$ and $y = a \cos(\varphi)$ for some given $a \in \mathbb{R}$.

- (a) Calculate $\frac{dy}{dx}$ using the given parametrization.
- (b) Show that the curve satisfies $4y^3 = a^2(x+3y)$.
- (c) Calculate $\frac{dy}{dx}$ by implicit differentiation of the equation from (b). Does the result coincide with (a)?