Elements of Calculus
Frais Sorren Petrat, Constructor University
Lecture notes from Spring 2025
6. Multivariable Calculus
6. 1 Total and Partial Derivatives
Topic for Week 9 B: Definitions of Total (Partial and Directional Derivatives
In this chapter we discuss functions with many variables and their derivatives.
In this chapter we discuss functions with many variables and their derivatives.
In the mast general care:
$$f: TR^{M} \rightarrow TR^{m}$$
, $(x_{1},...,x_{N}) \mapsto \begin{pmatrix} f_{n}(x_{N}...,x_{N}) \\ f_{n}(x_{N}...,x_{N}) \end{pmatrix}$ in composeds
Usually:
 \circ fet. $f: TR \rightarrow TR^{m}$ (m.22) is called a curve in \mathbb{R}^{M} ,
 \circ fet. $f: TR^{N} \rightarrow TR^{m}$ (m.22) is called a scalar field,
 \circ fet. $f: TR^{N} \rightarrow TR^{m}$ (m.22) is called a vector field.
In general, we need vectors and matrices to describe fet.s $f: TR^{N} \rightarrow TR^{m}$ and their derivatives.
Therefore, let us secall the following volution and vesiths from Elements of Linear Algebra:
 \cdot We write vectors $x \in TR^{m}$ as $x = \begin{pmatrix} x_{1} \\ \vdots \\ x_{1} \end{pmatrix}$. Their norm is $||x|| = (\frac{\pi}{2\pi}x_{1}^{2})^{\frac{1}{2}}$ and the
Scalar product is $c_{X,Y} > = \frac{\pi}{2\pi}x_{1Y_{2}}$.
 \cdot A map $L: TR^{m} \rightarrow TR^{m}$ is linear if $L(X \times x_{Y}) = \lambda L(X) + L(Y)$. $\forall x_{Y} \in TR^{n}$, $\lambda \in TR$.
For linear maps we usually write $L(X) = LX$.

· linear maps L: TR -> TR are in one-to-one correspondence to mxn matrices

Since || L " || L || L || L || , we have || L u || C || L || || u ||.

First, we want to define differentiability of
$$f: \mathbb{R}^n \to \mathbb{R}^n$$
. Recall that for functions
 $f: \mathbb{R} \to \mathbb{R}$ we defined differentiability at X_0 as:
 $\exists m \in \mathbb{R}$ s.t. for small enough $h: f(x_0+h) = f(x_0) + mh + r_x(h)$, with $\lim_{h \to 0} \left| \frac{r_x(h)}{h} \right| = 0$.
Clearly, $L_m: \mathbb{R} \to \mathbb{R}$, $h \mapsto mh$ is a linear map.
Key insight: For $f: \mathbb{R}^n \to \mathbb{R}^m$, we still define differentiability by requiring that a
linear approximation is passible.

$$\begin{array}{l} \underline{\operatorname{Definition:}} (et \ f:\mathbb{R}^n \to \mathbb{R}^m. \ Then \ f \ is called \ differentiable \ at \ \chi_o \in \mathbb{R}^n \ if \ there \ is \ a \\ \ hivear \ map \ A:\mathbb{R}^n \to \mathbb{R}^m \ s.t. \\ f(x_{it}h) = f(x_{i}) + Ah + r_{\chi_o}(h) \quad \text{with } \lim_{h \to 0} \frac{||r_{\chi_o}(h)||}{||h||} = 0. \\ \ h \ other \ nords: \ \lim_{h \to 0} \frac{||f(x_{i}h) - f(x_{i}) - Ah||}{||h||} = 0. \\ \ We \ call \ A = Df|_{\chi_o} = f'(x_{o}) \ the \ total \ derivative \ of \ f \ at \ \chi_o. \\ \ lf \ f \ is \ differentiable \ for \ all \ \chi_o \in \mathbb{R}^n, \ we \ say \ f \ is \ differentiable \ in \ \mathbb{R}^n. \end{array}$$

Note:
• Everything is defined analogously when f is only defined on a subset of TR".
Such a subset needs to be the generalization of an open interval, e.g., Br(x) = {y \in TR": ||x-y||\frac{||r_{x}(h)||}{||h||} \longrightarrow 0 implies $||r_{x_0}(h)|| \longrightarrow 0$.
• For f: TR² \rightarrow TR, differentiability means that we can approximate f near xo by a
tangent plane. (We provide visualizations later.)

Proof: Suppose both
$$A_n$$
 and A_n are derivatives. Then $B = A_n - A_n$ satisfies

$$\frac{||Bh||}{||h||} = \frac{1}{||h||} ||f(x_0 + h) - f(x_0) - V_{n_{1}x_0}(h) - (f(x_0 + h) - f(x_0) - r_{z_1x_0}(h))||$$

$$\leq \frac{||r_{n_1x_0}(h)||}{||h||} + \frac{||r_{z_1x_0}(h)||}{||h||} \xrightarrow{h \to 0} 0.$$

Now fix any
$$u \in TR^{n}$$
, $u \neq 0$ and choose $h = tu$, $t \in TR$. Then:
 $0 \stackrel{t \rightarrow 0}{\leftarrow} \frac{||(A_{1} - A_{2})h||}{||h||} = \frac{||(A_{1} - A_{2})tu||}{||tu||} = \frac{||(A_{1} - A_{2})u||}{||u||}$, i.e., $A_{1}u = A_{2}h$ $\forall u \in TR^{n}$
 $=> A_{n} = A_{2}$.

Example:
$$f(x_{a_1}, x_{2}) = \begin{pmatrix} x_{a_1}^2 + x_{a_2} x_{2} \\ \lambda x_{a_1} - x_{2}^2 \end{pmatrix}$$

Mext we consider derivatives in different directions:
Definition:
$$f:\mathbb{R}^{n} \to \mathbb{R}^{m}$$
 is differentiable at $x \in \mathbb{R}^{n}$ in the direction $u \in \mathbb{R}^{n}$,
 $\|u\|_{1} = 1$, if $\lim_{t \to 0} \frac{f(x,tu) - f(x)}{t}$ exists. Then this limit is denoted by $D_{u}f|_{x_{0}}$ and
called directional derivative. (or derivative in direction u)
If f is differentiable in the direction e_{j} , we call $D_{e_{j}}f|_{x_{0}} = \frac{2f}{2x_{j}}(x_{0})$ the
 j -th partial derivative of f at x_{0} .
In other words: $\frac{2f_{u}}{2x_{j}}(\overline{x}) = \lim_{t \to 0} \frac{f_{u}(\overline{x}, \dots, \overline{x_{j-1}}, \overline{x_{j}+t}, \overline{x_{sum}}, \overline{x_{n}}) - f_{u}(\overline{x})}{t}$.
The 1-dimensional derivative of f_{u} in the variable x_{j} only (begoing all other variables fixed)

$$\underline{E_{X,:}} \quad \mathcal{L}(X_{A}, X_{2}) = \begin{pmatrix} \chi_{A}^{2} + \chi_{A} \times \chi_{2} \\ \lambda_{A} - \chi_{2}^{2} \end{pmatrix} = \gamma \quad \frac{\partial \mathcal{L}}{\partial \chi_{A}} = \begin{pmatrix} \lambda_{A} + \chi_{2} \\ \lambda_{A} \end{pmatrix} \quad , \quad \frac{\partial \mathcal{L}}{\partial \chi_{2}} = \begin{pmatrix} \lambda_{A} \\ -\lambda_{X_{2}} \end{pmatrix}$$

Note that in the example we have $Df|_{X} = \left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}\right)$.