Elements of Calculus
Frof. Sören Petrat, Constructor University
lecture notes from Spring 2025
6. Multivariable Calculus
6.1 Total and Partial Derivatives
Topic for Week 10 A: Connections between Total Directional (Partial Derivatives
Recall the definitions of different derivatives for functions
$$f:\mathbb{R}^{N} \to \mathbb{R}^{4n}$$

(i.e., f takes in a vector $\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$ and gives out a vector $\begin{pmatrix} f_{1}(k_{2},...,x_{n}) \\ f_{m}(k_{2},...,x_{n}) \end{pmatrix}$).
Total derivative. f is totally differentiable of x_{0} if we can find an maximatrix A s.t.
 $f(x_{0}k_{0}) = f(x_{0}) + Ah + r_{x_{0}}(h)$ with $\lim_{h \to 0} \frac{|Ir_{x_{0}}(h)|I|}{|Ih||I} = 0$.
If this is the case we call $A = Df|_{X_{0}}$ the total derivative of f at x_{0} .

Directional derivative. We fix a direction
$$u \in \mathbb{R}^{N}$$
, $||u|| = 1$. Then f is differentiable at x_{0}
in direction u if $\lim_{t \to 0} \frac{f(x_{0}+tu)-f(x_{0})}{t}$ exists. If it does, we define it to be
the derivative of f at x_{0} in direction u : $D_{u}f|_{x_{0}} = \lim_{t \to 0} \frac{f(x_{0}+tu)-f(x_{0})}{t}$

• Partial derivative. This is the special case of $u = e_j = j$ -th Euclidean basis vector. f has a j-th partial derivative at x_0 if $\lim_{t\to 0} \frac{f(x_0 + te_i) - f(x_0)}{t}$ exist. In this case

we call
$$\frac{\partial f}{\partial x_i}(x_0) = \lim_{t \to 0} \frac{f(x_0 + te_i) - f(x_0)}{t}$$
 the j-th partial derivative of f at x_0 .
Sometimes we just write $\partial_i f(x_0)$

Note:
$$Df|_{x_0}$$
 is an maxy matrix, $D_nf|_{x_0}$ is a vector in \mathbb{R}^m , $\frac{\partial f}{\partial x_0}(x_0)$ a vector in \mathbb{R}^m .

Example from last time: For
$$f(x_{11}x_2) = \begin{pmatrix} x_1^2 + x_1 x_2 \\ 2 x_1 - x_2^2 \end{pmatrix}$$
 we find:

$$\cdot f(x+h) = f(x_1+h_{A_1}x_2+h_2) = \begin{pmatrix} x_1^2+x_4x_2\\ 3x_4-x_2^2 \end{pmatrix} + \begin{pmatrix} 3x_4h_4+x_4h_2+x_2h_4\\ 3h_4-3h_2x_2 \end{pmatrix} + \begin{pmatrix} h_4\\ -h_2^2 \end{pmatrix} \\ = f(x_4)x_2 \end{pmatrix} = f(x_4)x_2 + x_4 + x_4h_2 + x_4h_2 + x_4h_4 + x_$$

Hence the total derivative is
$$\mathfrak{D}f|_{X} = \begin{pmatrix} \lambda_{x,x} + \lambda_{z} & \lambda_{z} \\ \lambda & -\lambda_{z} \end{pmatrix}$$

$$\lim_{t \to 0} \frac{f(x+tu) - f(x)}{t} = \lim_{t \to 0} \frac{1}{t} \begin{bmatrix} (x, t+tu_{1})^{2} + (x_{1}+tu_{4})(x_{z}+tu_{z}) \\ \lambda(x_{1}+tu_{4}) - (x_{z}+tu_{z})^{2} \end{bmatrix} - \begin{pmatrix} x_{1}^{2} + x_{4}x_{z} \\ \lambda_{z} - x_{z}^{2} \end{pmatrix} \end{bmatrix}$$

$$= \lim_{t \to 0} \frac{1}{t} \begin{pmatrix} 2tu_{x,x} + t^{2}u_{1}^{2} + tx_{1}u_{z} + tx_{z}u_{4} + t^{2}u_{4}u_{z} \\ \lambda + u_{4} - \lambda + x_{2}u_{2} - t^{2}u_{z} \end{pmatrix}$$

$$= \begin{pmatrix} 2x_{1}u_{4} + x_{1}u_{z} + x_{z}u_{4} \\ \lambda u_{4} - \lambda + x_{2}u_{2} \end{pmatrix}$$

$$= \begin{pmatrix} 2x_{1}u_{4} + x_{4}u_{z} + x_{z}u_{4} \\ \lambda u_{4} - \lambda + x_{2}u_{2} \end{pmatrix}$$

Hence, the derivative in direction u is
$$D_{u}f|_{x} = \begin{pmatrix} dx_{1}+x_{2} & x_{1} \\ dx_{2} & -dx_{2} \end{pmatrix} \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix}$$

The partial derivatives are: $\cdot \frac{\partial f}{\partial x_{1}} = \frac{\partial}{\partial x_{1}} \begin{pmatrix} x_{1}^{2} + x_{2}x_{2} \\ dx_{4} - x_{2}^{2} \end{pmatrix} = \begin{pmatrix} dx_{1} + x_{2} \\ dx_{3} + x_{2} \end{pmatrix}$
 $\cdot \frac{\partial f}{\partial x_{2}} = \frac{\partial}{\partial x_{2}} \begin{pmatrix} x_{1}^{2} + x_{4}x_{2} \\ dx_{4} - x_{2}^{2} \end{pmatrix} = \begin{pmatrix} x_{1} \\ -dx_{2} \end{pmatrix}$

We could also see this by choosing
$$u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 for $\frac{\partial f}{\partial x_1}$ and $u = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ for $\frac{\partial f}{\partial x_2}$

We notice that in this example the derivatives are connected:

•
$$D_{u}f|_{\chi} = Df|_{\chi} u$$

 $Matrix times vector$
• $Df|_{\chi} = \left(\frac{\partial f}{\partial x_{1}} - \frac{\partial f}{\partial x_{2}}\right)$, which follows from $D_{u}f|_{\chi} = Df|_{\chi} u$ by choosing $u = e_{j}, j = 1,..., n$.
 $Matrix with \frac{\partial f}{\partial x_{j}}$ as column vectors

The first equality holds not just in this example, but none generally.
Why?
$$f$$
 differentiable at x means $\lim_{h \to 0} \frac{||f(x+h) - f(x) - Dfh||}{||h||} = 0$.
In particular, for $u \in TR^{N}$, $||u|| = 1$, we can choose $h = tu$ and get
 $0 = \lim_{t \to 0} \frac{||f(x+tu) - f(x) - Df(ut)||}{t} = \lim_{t \to 0} ||\frac{f(x+tu) - f(x)}{t} - Dfu||$
i.e., $\lim_{t \to 0} \frac{f(x+tu) - f(x)}{t} = Dfu$.

Hence we have:

Theorem: If
$$f:\mathbb{R}^{n} \to \mathbb{R}^{m}$$
 is differentiable at $x_{o} \in \mathbb{R}^{n}$, then all directional derivatives
at x_{o} exist. In this case, the derivative in direction netter, $||u||=1$, is given by
 $D_{u}f|_{x_{o}} = Df|_{x_{o}} u$. In particular, $\frac{\partial f_{i}(x)}{\partial x_{j}} = (Df|_{x_{o}})_{ij}$.

Maximumetrix
derivative of the (i,j) matrix entry of
 $i-th$ component of f the total derivative i
wrt. x_{j} = the matrix of this
linear map in the basis (e_{j})

We call
$$J(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \\ \vdots & \vdots \\ \frac{\partial f_m}{\partial x_n} & \cdots & \frac{\partial x_n}{\partial x_n} \end{pmatrix}$$
 the Jacobian matrix of f at x .

But: There are examples of functions where all partial derivatives exist, but which are not differentiable (total derivative does not exist), e.g.,

•
$$f(x,y) = \begin{cases} \frac{\partial^2 x Y}{\partial x^2 + y^2} & | & (x,y) \neq (0,0) \end{cases}$$
 Here, the partial derivatives exist at $(0,0)$, but f is
 $0 & | & (x,y) = (0,0) \end{cases}$ not even continuous there.

•
$$f(x_1y) = \begin{cases} \frac{x_1y^2}{x^2+y^2} & (x_1y) \neq (0,0) \\ 0 & (x_1y) = (0,0) \end{cases}$$
 Here, f is continuous at (0,0) and all directional
 $0 & (x_1y) = (0,0) \end{cases}$ derivatives exist there. But f is not differentiable
at (0,0).

See <u>https://www.geogebra.org/3d</u> for the plots.

