Elements of Calculus Prof. Sören Petrat, Constructor University Lecture notes from Spring 2025

6. Multivariable Calculus

Topic for Week 11 B: Critical Points, Maxima and Minima

let us recall the following way of finding maximal minima in one-variable Calculus:
let f:TR
$$\rightarrow$$
 TR be twice continuously differentiable. Then c is called a critical
(or stationary) point if $\frac{df}{dx}(c) = 0$. Furthermore:
 $\cdot |f \frac{d^2f}{dx^2}(c) > 0$, then c is a local minimum
 $\cdot |f \frac{d^2f}{dx^2}(c) < 0$, then c is a local maximum
 $|f \frac{d^2f}{dx^2}(c) < 0$, then c is a local maximum

• If
$$\frac{d^2 f}{dx^2}(c) = 0$$
, then the 2nd derivative test is inconclusive (can be max or min or neither)

Session 22 (Week 11B) Today: What about max/min of $f:TR^m \rightarrow TR \stackrel{?}{\rightarrow}$ As in TR, we say that f has a local maximum (minimum) at $C \in TR^m$ if f(x) = f(c) $(f(x) \ge f(c))$ for all x hear c.

(This can nicely be seen by the chain rule: For any direction $u \in \mathbb{R}^n$, ||u|| = 1, the function g(t) = f(c + tu) has a local max. linin. at $t = 0 \implies 0 = \frac{da}{dt}|_0 = \sum_{i=1}^n \frac{\partial f_i}{\partial x_i}(c) \frac{\partial(c_i \cdot tu_i)}{\partial t} = \nabla f(c) \cdot u$ $\Longrightarrow \nabla f(c) = 0$.

Examples (see geogebra pictures below): • $f(x_{11}x_{2}) = -x_{1}^{2} - x_{2}^{2}$ has a maximum at (°).

• $f(x_{1}, x_{2}) = x_{1}^{2} - x_{2}^{2}$ has a subdlepoint at $\binom{0}{0}_{1}$ i.e., a maxim one direction, a min. in another direction.

 $f(x_n, x_n) = x_n^2 - x_n^2$ has neither a max., nor a min., nor a suddlepoint at (°). We call this a degenerate critical point.

=> A critical point can be a local max, local min, a saddle point, or neither. For a second derivative test in TR", recall the Taylor expansion for $f:\mathbb{R}^n \to \mathbb{R}$: $f(c+h) = f(c) + \nabla f(c) \cdot h + \frac{1}{2} ch, H_{f}(c)h^{2} + r_{c}(h)$, with $H_{f}(c)$ the Hessian = 0 if c is a critical point matrix with entries $(H_{f}(c))_{ij} = \frac{\partial^{2} f(c)}{\partial x_{i} \partial x_{j}}$.

Hence:
$$\cdot |f ch, H_{f}(c|h^{3}) > 0$$
 for all h, c is a local min
 $\cdot |f ch, H_{f}(c|h^{3}) < 0$ for all h, c is a local max
 $\cdot |f ch, H_{f}(c|h^{3}) > 0$ for some h and < 0 for all others, c is a saddle point
 $\cdot |f ch, H_{f}(c|h^{3}) = 0$ for some h , we need to look at highen derivatives.

Non recall from Elements of Linear Algebra that a matrix H with chilles >0 VheTR" is called positive definite. And a real symmetric matrix is positive definite if and only if all eigenvalues are positive. (See Week 10 A Session of Elements of Linear Algebra.)

Evenything works (H_f is symmetric, r_c(h) is small) if all second partial derivatives of f are continuous, hence we can formulate:

Theorem: let
$$f:\mathbb{R}^n \to \mathbb{R}$$
 be trice continuously differentiable, and suppose $\nabla f(c)=0$ for
some $c\in\mathbb{R}^n$. let $\lambda_{n_1\dots,n_n}\lambda_n$ denote the eigenvalues of the Hessian of f at c . Then:
 $\cdot |f$ all $\lambda_i > 0$, then c is a local minimum.
 $\cdot |f$ all $\lambda_i < 0$, then c is a local maximum.
 $\cdot |f$ some $\lambda_i > 0$ and the other $\lambda_i < 0$ (but none equal 0), then c is a saddle point.
 $\cdot |f$ at least one $\lambda_i = 0$, then the fest is juconclusive.

Examples:

$$f(x,y) = -x^{2} - y^{2} = \sum \nabla f = \begin{pmatrix} -2x \\ -2y \end{pmatrix} = \sum \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ is critical point}$$

$$H_{F}(0) = \begin{pmatrix} (\partial_{x}^{2}f)(0) & (\partial_{x}\partial_{y}f)(0) \\ (\partial_{x}\partial_{y}f)(0) & (\partial_{y}^{2}f)(0) \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} = \sum \begin{pmatrix} 0 \\ 0 & -2 \end{pmatrix} = \sum \begin{pmatrix} 0 \\ 0 & -2 \end{pmatrix}$$

$$\begin{aligned} f(x,y) &= x^{2} - y^{2} \\ H_{\xi}(0) &= \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} => \quad \text{Suddle yoint} \\ f(x,y) &= y^{2} - 3 \times^{2} y \\ (\nabla \xi) &= \begin{pmatrix} -6 \times y \\ 3y^{2} - 3 \times^{2} \end{pmatrix} => \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ is the only critical point} \\ H_{\xi} &= \begin{pmatrix} -6y & -6x \\ -6x & 6y \end{pmatrix} => \\ H_{\xi}(0) &= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} => \text{ inconclusive} \end{aligned}$$

Viscalization with geogebra shows that (°) is wither max nor miniit is a "monkey saddle".

Use <u>https://www.geogebra.org/3d</u> for generating the plots.

 $f(x,y) = -x^2 - y^2 + 4$

 $f(x,y) = x^2 - y^2 + 2$

("Monkey Saddle")

