1. Topological vector spaces

Let V be a vector space. An infinite family of elements from V is called \textit{linearly independent} if any finite subfamily of it is linearly independent. A maximal linearly independent family in V is called a \textit{Hamel basis} of V. The cardinality of a Hamel basis is called the \textit{algebraic dimension} of V.

Let K denote the field of scalars (usually $K = \mathbb{R}$ or \mathbb{C}). A subset $E \subseteq V$ is called \textit{balanced} if $\forall \alpha \in K$ such that $|\alpha| \leq 1$, we have $\alpha E \subseteq E$. A subset E is called \textit{absorbing} if $\bigcup_{\lambda \in K} \lambda E = V$.

A vector space V is called a \textit{topological vector space} if there is a topology in V such that the linear operations (addition and multiplication by scalars) are continuous.

A map $p : V \to [0, \infty]$ is called a \textit{semi-norm} if $p(\lambda x) = \lambda p(x)$ (positive homogeneity) and $p(x + y) \leq p(x) + p(y)$ (convexity). A semi-norm is called a \textit{norm} if it is finite everywhere and $p(x) = 0$ implies $x = 0$. If no confusion can arise, a norm is denoted by $\| \cdot \|$.

For a semi-norm p, define the \textit{unit ball} $B_p = \{ x \in V \mid p(x) \leq 1 \}$. For each absorbing subset $B \subseteq V$, define the \textit{Minkowski functional} of B as $p_B(x) = \inf\{ \lambda > 0 \mid x \in \lambda B \}$ (if there is no such λ then $p_B(x) = \infty$).

A topological vector space V is called \textit{locally convex} if it has a basis of convex neighborhoods of 0. If the topology of V is defined by a family of semi-norms, then the space V is said to be \textit{polynormed}. If this family of semi-norms is countable, then V is said to be \textit{countably normed}. A topological vector space is called a \textit{metric vector space} if there is a translation invariant metric on V (translation invariance of a metric d means that $d(x, y) = d(x + z, y + z)$ for all $x, y, z \in V$). A space equipped with a norm is called a \textit{normed space}. A complete normed space is called a \textit{Banach space}.

Problems and theorems.

1.1. Prove that algebraic dimension of a vector space does not depend on the choice of a Hamel basis.

1.2. Vector spaces are isomorphic iff they have the same algebraic dimension.

1.3. A subset $B \subseteq V$ is convex, balanced and absorbing iff p_B is a semi-norm and $B = B_p$.

1.4. A subset B is convex, balanced, absorbing and does not contain any line iff p_B is a norm and $B = B_p$.

1.5. In a topological vector space, for any neighborhood U of 0, there exists a neighborhood V such that $V + V \subseteq U$.

1.6. In a topological vector space, for any neighborhood U of 0, there exists a neighborhood V such that $V = -V$ and $V + V \subseteq U$. 1
1.7. An arbitrary neighborhood of 0 in a locally convex space contains an open convex balanced neighborhood. *Hint:* use the continuity of scalar multiplication.

1.8. Any locally convex space is polynormed. Any polynormed space is locally convex.

1.9. Any countably normed space is metric. *Hint:* define

\[d(x, y) = \sum 2^{-n} \frac{p_n(x - y)}{1 + p_n(x - y)}. \]

1.10. Suppose that, in a topological vector space \(V \), all points are closed. Then any compact set \(K \subset V \) can be separated from any closed set \(C \subset V \) disjoint with \(K \). In other terms, there are open sets \(U \supset K \) and \(V \supset C \) such that \(U \cap V = \emptyset \).

1.11. If, in a topological vector space, all points are closed, then this space is Hausdorff.

1.12. Let \(V \) be a non-Hausdorff space. There exists a unique subspace \(W \) such that any neighborhood of any point in \(W \) contains \(W \), and \(V/W \) is Hausdorff. If \(V \) is polynormed with the family \(\{p_\alpha\} \) of semi-norms, then \(W = \{all p_\alpha = 0\} \). In the sequel, we assume all topological vector spaces to be Hausdorff.

1.13. A linear map between topological vector spaces is continuous iff it is continuous at 0.

1.14. Consider a linear functional \(l : V \to \mathbb{K} \) on a topological vector space. The following statements are equivalent:
- \(l \) is continuous,
- \(\ker(l) \) is closed,
- \(\ker(l) \) is not everywhere dense.

1.15. **The Hahn-Banach theorem.** Let \(p \) be a semi-norm on \(V \) and \(W \subseteq V \) a subspace. Suppose \(f \) is a functional on \(W \) such that \(|f| \leq p \) on \(W \). Then \(f \) extends to a functional on \(V \) such that \(|f| \leq p \) on \(V \). *Hint:* use Zorn’s lemma.

1.16. In a polynormed space, continuous linear functionals separate points. In other words, for any pair of points \(x, y \in V \), there exists a continuous linear functional \(l : V \to \mathbb{K} \) such that \(l(x) < 0 < l(y) \).

1.17. Let \(V \) be a real vector space. Consider a convex and absorbing set \(B \subset V \) and a point \(y \not\in B \). There is a linear functional \(l \) on \(V \) such that \(|l|_B \leq 1 \) and \(l(y) > 1 \). (In other terms, \(B \) can be separated from \(y \) by a hyperplane). *Hint:* one can assume WLOG that \(B \) is balanced, otherwise replace \(B \) with \(B \cap (-B) \).

1.18. **Geometric form of the Hahn–Banach theorem.** Let \(V \) be a real vector space. The kernel of a subset \(X \subseteq V \) consists of all points \(x \in X \) such that

\[(\forall y \in V)(\exists \varepsilon > 0)(\forall t \in \mathbb{R} : |t| < \varepsilon) \ x + ty \in X. \]

(equivalently, the kernel of \(X \) is the set of all \(x \in X \) such that \(X - x \) is absorbing). Let \(X \subseteq V \) be a convex subset of \(V \) with a nonempty kernel and \(Y \subseteq V \) - a convex subset such that \(X \cap Y = \emptyset \). Then there exists a hyperplane separating \(X \) and \(Y \). *Hint:* consider the Minkowski functional of \((X - x) - (Y - y) \) where \(x \) lies in the kernel of \(X \) and \(y \in Y \).

1.19. **The Banach-Steinhaus theorem.** Let \(V \) be a complete metric vector space and \(W \) a normed space. Consider a family of operators \(A_\gamma : V \to W \). If for any \(x \in V \) the family \(\{A_\gamma(x)\} \) is bounded, then the family \(\{A_\gamma\} \) is uniformly bounded on the unit ball. *Hint:* consider the set

\[F_k = \{ x \in V | \|A_\gamma(x)\| \leq k \ \forall \gamma \}. \]

We have \(V = \bigcup F_k \). By the Baire theorem, at least one \(F_k \) has nonempty interior. Therefore, \(A_\gamma \) is uniformly bounded on some ball.
1.20. In notation of the previous problem, \(\{A_n\} \) is equicontinuous.

1.21. **Banach’s open mapping theorem.** Let \(V \) and \(W \) be Banach spaces. Then each one-to-one continuous operator \(A : V \to W \) is open, i.e., the inverse operator \(A^{-1} \) is continuous.

Plan of the proof. Let \(B \subset V \) be an open ball of radius \(\varepsilon \) centered in 0. Define \(X_n = A(nB) \). Prove that at least one of \(X_n \) contains a ball (use the Baire property). Prove that \(\bar{A}(B) \) contains a ball centered in 0. Finally, prove that \(A(B) \) contains a ball centered in 0.

1.22. Suppose a space \(V \) is complete with respect to both norms \(p_1 \) and \(p_2 \) and \(p_1 \leq Cp_2 \). Then \(p_2 \leq C'p_1 \), i.e., the norms \(p_1 \) and \(p_2 \) are equivalent. **Hint:** consider the identity map from \((V, p_1)\) to \((V, p_2)\).

1.23. Let \(Z \) be a Banach space, \(X \) and \(Y \) closed subspaces s.t. \(Z = X + Y \), \(X \cap Y = 0 \). Then the projection to \(X \) is continuous. **Hint:** consider the norm \(z \mapsto ||\pi_X(z)|| + ||\pi_Y(z)|| \), where \(\pi_X \) and \(\pi_Y \) are the projections to \(X \) and \(Y \), respectively.

1.24. **F. Riesz’ theorem.** Let \(X \) be a normed space such that there is a compact set \(B \), whose interior contains the origin. Then \(X \) is finite-dimensional. (In other terms, any locally compact normed space is finite-dimensional). **Hint:** there is a finite set \(A \) such that \(B \subseteq A + \frac{1}{2}B \). Let \(Y \) be the vector subspace spanned by \(A \). Show that \(B \subseteq Y + 2^{-n}B \) for any natural \(n \). Deduce that \(B \subseteq Y \).

2. **Dual spaces**

For a topological vector space \(V \), let \(V^* \) denote the space of all continuous linear functions on \(V \). The space \(V^* \) is called the dual space of \(V \). If \(V \) is a normed space, then there is a norm in \(V^* \):

\[
||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||}.
\]

If \((V, \{p_\alpha\})\) is a polynormed space, then \(V^* \) is also polynormed with respect to the family of semi-norms

\[
p^*_\alpha = \sup_{x \neq 0} \frac{|p_\alpha(x)|}{||x||}.
\]

The weak topology in a topological vector space \(V \) is defined by a family of semi-norms \(p_f(x) = |f(x)| \) where \(f \) runs over \(V^* \). The convergence with respect to the weak topology is called the weak convergence (notation: \(x_n \xrightarrow{w} x \)). We have \(x_n \xrightarrow{w} x \) iff \(f(x_n) \to f(x) \) for any \(f \in V^* \). The \(*\)-weak topology in \(V^* \) is defined by a family of semi-norms \(p_x(f) = |f(x)| \) where \(x \) runs over \(V \). If \(V \) is a normed space, then the topology in \(V^* \) defined by the norm in \(V^* \) is called the strong topology. By default, the topology in \(V^* \) is assumed to be strong.

Problems and theorems.

2.1. For any normed space \(V \) (not necessary complete) the dual space \(V^* \) is complete.

2.2. Let \(V \) be a normed space. Then for any \(x \in V \) there exists \(f \in V^* \) such that \(|f(x)| = ||f|| \cdot ||x|| \). **Hint:** use the Hahn-Banach theorem.

2.3. For a normed space \(V \), the embedding \(V \to V^{**} \) is isometric.
2.4. Let V and W be normed spaces and $A : V \to W$ a continuous linear operator. Define

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}.$$

Prove that $||A^*|| = ||A||$, where $A^* : W^* \to V^*$ is the dual operator defined by the formula $(A^* f)(x) = f(Ax)$.

2.5. **The Banach-Alaoglu theorem.** Let V be a separable normed space. Then the closed unit ball in the dual space V^* is compact in the $*$-weak topology. Hint: Let X be a countable dense set in V. Consider a sequence of functionals $l_n \in V^*$, $||l_n|| \leq 1$. For each x, the sequence $l_n(x)$ contains a convergent subsequence. Use the diagonal argument to find a subsequence $l_n(x)$ such that $l_n(x)$ converges to some number $l(x)$ for each $x \in X$. Prove that l extends to a well-defined linear functional on V with $||l|| \leq 1$.

3. Hilbert spaces

A Hilbert space is a vector space H with a positively definite hermitian metric $\langle \cdot, \cdot \rangle$ such that H is complete with respect to the norm $||x|| = \sqrt{\langle x, x \rangle}$.

Problems and theorems.

3.1. **The parallelogram law.** A normed space V is a Hilbert space iff

$$(\forall x, y \in V) \quad ||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

3.2. Let K be a nonempty convex closed subset in a Hilbert space H. Then for any $x \in H$ there exists a nearest point $y \in K$. Hint: deduce the following inequality from the parallelogram law:

$$||y_1 - y_2||^2 \leq 2(||x - y_1||^2 + ||x - y_2||^2) - 4 \left| \left| x - \frac{y_1 + y_2}{2} \right| \right|^2.$$

3.3. Let $H_1 \subset H$ be a closed subspace and $x \notin H_1$. If x_1 is the nearest point to x in H_1, then $x - x_1 \in H_1^\perp$.

3.4. Let $H_1 \subseteq H$ be a closed subspace and $H_2 = H_1^\perp$. Then $H = H_1 + H_2$.

3.5. Each linear continuous functional f on a Hilbert space H has the form $f(x) = \langle y, x \rangle$, where $y \in H$. In particular, $H^* = H$. Hint: choose the nearest point to the origin in the hyperplane $f = 1$.

3.6. **Bessel’s inequality.** Let $\{x_\alpha\}$ be an orthonormal system. Then

$$\langle \forall x \in H \rangle \sum ||\langle x, x_\alpha \rangle||^2 \leq \langle x, x \rangle.$$

In particular, $\langle x, x_\alpha \rangle \neq 0$ only for finite or countable number of α. Hint: for any finite subset A of indices, consider $x' = \sum_{\alpha \in A} \langle x, x_\alpha \rangle x_\alpha$. Then $x = x' + x''$ with $x' \perp x''$. Deduce that

$$\langle x, x' \rangle = \langle x', x' \rangle \leq \langle x', x' \rangle + \langle x'', x'' \rangle = \langle x, x \rangle.$$

3.7. **Parseval’s identity.** A system $\{x_\alpha\}$ is called complete if $\{x_\alpha\}^\perp = 0$. For any complete system and any $x \in H$, we have

$$\sum ||\langle x, x_\alpha \rangle||^2 = \langle x, x \rangle.$$

The series $\sum \langle x, x_\alpha \rangle x_\alpha$ converges to x.

3.8. A system $\{x_\alpha\}$ is said to be a Hilbert basis of H if for every $x \in H$ there exists a unique convergent series

$$x = \sum c_\alpha x_\alpha.$$

This series is called the Fourier series for x. The coefficients c_α are called the Fourier coefficients.
3.9. Orthogonalization. Let \(\{x_n\} \) be a sequence of linearly independent elements in \(H \). There exists an orthonormal system \(\{y_n\} \) such that \(y_n \) belongs to the linear span of \(x_1, \ldots, x_n \) for every \(n \). The element \(y_n \) is unique up to a sign.

3.10. Any separable Hilbert space admits a countable complete orthonormal system. Every two infinite-dimensional separable Hilbert spaces are isomorphic.

4. Bounded and compact operators

Let \(V \) and \(W \) be normed spaces. A linear operator \(A : V \to W \) is called bounded if the image of the unit ball under \(A \) is a bounded subset of \(W \). For a bounded operator \(A \), one defined the norm

\[
||A|| = \sup_{x \in V - \{0\}} \frac{||A(x)||}{||x||}.
\]

Any bounded operator \(A \) is clearly continuous. An operator \(A \) is said to be compact if \(A(B) \) is compact, where \(B \) is the unit ball in \(V \). In other terms, \(A \) is compact iff the \(A \)-image of any bounded sequence contains a convergent subsequence.

Problems and theorems.

4.1. The set of invertible bounded operators on a Banach space is open. Hint: If \(||A|| < 1 \), then \((E - A)^{-1} = E + A + A^2 + \ldots \).

4.2. Let \(C : V \to V \) be a compact operator, and \(B : V \to V \) a bounded operator. Then the operators \(CB \) and \(BC \) are compact.

4.3. The limit of any convergent sequence of compact operators is compact. Hint: let \(T_n \) be compact operators such that \(||T_n - T|| \to 0 \). Take any bounded sequence of vectors \(x_m \). Using the diagonal argument, choose a subsequence \(x_{m_k} \) such that \(T_n(x_{m_k}) \) converges for all \(n \). Show that \(T(x_{m_k}) \) is a Cauchy sequence.

4.4. We say that an operator \(T : V \to V \) has finite rank if the image \(T(V) \) is finite-dimensional. Any operator of finite rank is compact.

4.5. Let \(H \) be a Hilbert space. An operator \(T : H \to H \) is compact iff there is a sequence \(T_n \) of operators of finite rank such that \(||T_n - T|| \to 0 \). Hint: Consider a Hilbert basis \((e_n) \) of \(H \). Let \(Q_n \) be the projector to the subspace spanned by \(e_k \) with \(k > n \). If \(T \) is compact, then \(||Q_nT|| \to 0 \).

4.6. Suppose that \(T : H \to H \) diagonalizes in some orthonormal basis, and let \(\lambda_k \) be the eigenvalues of \(T \). Show that \(T \) is compact iff \(|\lambda_k| \to 0 \).

4.7. Let \(\lambda \neq 0 \) be an eigenvalue of a compact operator \(T : H \to H \). Show that the corresponding eigenspace is finite-dimensional.

4.8. Let \(T : H \to H \) be a self-adjoint operator. Eigenvectors with different eigenvalues are orthogonal.

4.9. Let \(T : H \to H \) be a compact self-adjoint operator and \(\varepsilon > 0 \). The subspace of \(H \) spanned by all eigenvectors with eigenvalues \(\geq \varepsilon \) is finite-dimensional.

4.10. For a self-adjoint operator \(T \),

\[
||T|| = \sup\{||Tx|| : ||x|| = 1\}.
\]
4.11. If \(T : H \to H \) is a compact operator and \(T \neq 0 \), then \(||T|| \) or \(-||T||\) is an eigenvalue of \(T \).

Hint: Choose a sequence \(x_n \in H \) such that \(||x_n|| = 1 \), \(\langle Tx_n, x_n \rangle \to \pm||T|| \), and \(Tx_n \to y \). Prove that \(y \) is an eigenvector of \(T \).

4.12. **The spectral theorem.** Any compact self-adjoint operator on a Hilbert space diagonalizes in an orthonormal basis. **Hint:** let \(V \) be the subspace spanned by all eigenvectors of \(T \). Show that \(V = H \).

5. **\(L^p \) spaces**

Let \((X, \mu)\) be a measure space. Denote by \(L^p(X, \mu) \) the space of equivalence classes of measurable functions \(f \) on \(X \) s.t. \(|f|^p \) is integrable. The space \(L^p \) has the norm

\[||f||_p = \left(\int_X |f|^p d\mu \right)^{\frac{1}{p}}.\]

Problems and theorems.

5.1. Suppose that \(a \geq 0, b \geq 0 \) and \(p, q \geq 1 \) are s.t. \(1/p + 1/q = 1 \). Then \(ab \leq a^p/b + b^q/q \). **Hint:** First prove that \(e^{\lambda x + \mu y} \leq \lambda e^x + \mu e^y \) for \(\lambda, \mu \geq 0 \) such that \(\lambda + \mu = 1 \) and all \(x, y \in \mathbb{R} \). This follows from the convexity of the exponential function. Next set \(x = p \log a, y = q \log b, \lambda = 1/p, \mu = 1/q \).

5.2. **The Hölder inequality.** \(|f_X f g d\mu| \leq ||f||_p ||g||_q \), where \(1/p + 1/q = 1 \). **Hint:** it suffices to assume that \(||f||_p = ||g||_q = 1 \). Integrate the inequality \(|fg| \leq ||f||_p ||g||_q \).

5.3. Deduce from the Hölder inequality that

\[\left| \int |f|^{p-1} g \right| \leq ||f||_p^{p-1} ||g||_p.\]

5.4. **The Minkowski inequality.** The function \(||\cdot||_p \) is a norm. **Hint:** we need to prove that

\[||f + \lambda g||_p \leq ||f||_p + \lambda ||g||_p \]

for all \(\lambda \geq 0 \). Compare the \(\lambda \)-derivatives of the both sides.

5.5. The space \(L^q(\mathbb{R}) \) is the dual to \(L^p(\mathbb{R}) \) for \(1 \leq p < \infty \). **Hint:** Let \(F \in (L^p(\mathbb{R}))^* \). Define the charge \(\nu(A) = F(\chi_A) \). Prove that it is absolutely continuous. Use the Radon–Nikodym theorem.

5.6. If \(X \) is infinite, then \(L^1 \) is not \((L^\infty)^*\). **Hint:** use the Hahn-Banach theorem to extend the functional lim.

5.7. Any space \(L^p \) is Banach for \(1 \leq p \leq \infty \).

6. **Spaces of smooth functions**

For a compact metric space \(X \), let \(C(X) \) denote the space of all continuous functions on \(X \) with the uniform norm. Let \(\Omega \subset \mathbb{R}^n \) be an open subset. Define \(C^r(\Omega) \) as the space of all functions \(f \) s.t. for \(|l| \leq r \) the derivative \(\partial^l f \) is defined in \(\Omega \) and extends to \(\Omega \) by continuity (\(l \) is a multi-index).

Problems and theorems.

6.1. For a compact metric space \(X \), the space \(C(X) \) is a separable Banach space.

6.2. **Dini’s lemma.** Consider an increasing sequence of functions in \(C^R(X) \). If this sequence converges point-wise, then it converges everywhere.
6.3. Let I be an ideal in $C(X)$. Denote by Z_I the set of all points $x \in X$ such that $f(x) = 0$ for all $f \in I$. If $Z_I = \emptyset$, then there is a function $g \in I$ such that $g > 0$ everywhere on X.

6.4. An ideal in $C(X)$ is maximal iff it has the form

$$I_a = \{ g \in C(X) \mid g(a) = 0 \}$$

for some $a \in X$.

6.5. Prove that the closure of any ideal I in $C(X)$ coincides with

$$\{ f \in C(X) \mid f(x) = 0 \ \forall x \in Z_I \}.$$

Hint: Let $f \in C(X)$ and K be the set $\{ x \in X \mid |f(x)| \geq \varepsilon \}$. Prove that there exists a non-negative function $g \in I$ such that $g > 0$ on K. Consider the sequence $f_n = fng/(1 + ng)$.

6.6. Each Banach space V is isomorphic to a closed subspace of $C(X)$. If V is separable, then one can take $X = [0, 1]$. *Hint:* Let X be the unit ball in V^* with *-weak topology. Then $V \hookrightarrow C(X)$. If V is separable, then there exists a continuous surjection $[0, 1] \twoheadrightarrow X$.

6.7. $C[0, 1]^* = V[0, 1]$ (functions of bounded variation with the norm $\|g\| = \text{Var}_0^1(g)$). *Hint:* Let $F_t(f) = \int_0^1 f dg$ in the sense of Lebesgue–Stieltjes.

6.8. Suppose that X has at least two elements. Let $V \subset C^\infty(X)$ be a vector subspace such that for each pair of distinct elements $x, y \in X$ there is a function $f \in V$ such that $f(x) \neq f(y)$. Such a subspace V is called separating. Prove that for any $\alpha, \beta \in \mathbb{R}$, there exists $g \in V$ such that $g(x) = \alpha$ and $g(y) = \beta$.

6.9. There exists a sequence P_n of polynomials that converges uniformly on $[-1, 1]$ to the function $x \mapsto |x|$.

6.10. Let $A \subset C(X)$ be a closed subalgebra containing constants. Then A is stable under the operations $(f, g) \mapsto \min(f, g)$ and $(f, g) \mapsto \max(f, g)$. *Hint:* Using the preceding problem, first show that A is stable under $f \mapsto |f|$. Then use the formula

$$\min(a, b) = \frac{a + b - |a - b|}{2}.$$

6.11. **The Stone–Weierstrass theorem.** Let $A \subset C(X)$ be a separating subalgebra containing constants. Then A is dense in $C(X)$. *Hint:* let us approximate $f \in C(X)$ by elements of A. First fix $x \in X$. For any $y \in X$, choose $u_{x,y} \in A$ so that $u_{x,y}(x) = f(x)$ and $u_{x,y}(y) = f(y)$. Show that

$$f = \inf_x \sup_y u_{x,y}.$$

Using compactness, replace the infimum and supremum by minimum and maximum of finitely many functions to approximate f with a given precision.

6.12. A function $f : X \to \mathbb{R}$ is said to be Lipschitz if $|f(x) - f(y)| \leq C d(x, y)$ for some uniform constant $C > 0$. Lipschitz functions are dense in $C(X)$.

6.13. If X is a compact subset of \mathbb{R}^n, then polynomials are dense in $C(X)$.

7